4,577 research outputs found

    A deformation transformer for real-time cloth animation

    Get PDF
    Achieving interactive performance in cloth animation has significant implications in computer games and other interactive graphics applications. Although much progress has been made, it is still much desired to have real-time high-quality results that well preserve dynamic folds and wrinkles. In this paper, we introduce a hybrid method for real-time cloth animation. It relies on datadriven models to capture the relationship between cloth deformations at two resolutions. Such data-driven models are responsible for transforming low-quality simulated deformations at the low resolution into high-resolution cloth deformations with dynamically introduced fine details. Our data-driven transformation is trained using rotation invariant quantities extracted from the cloth models, and is independent of the simulation technique chosen for the lower resolution model. We have also developed a fast collision detection and handling scheme based on dynamically transformed bounding volumes. All the components in our algorithm can be efficiently implemented on programmable graphics hardware to achieve an overall real-time performance on high-resolution cloth models. © 2010 ACM.postprin

    Applications of Carbon Nanotubes to Flexible Transparent Conductive Electrodes

    Get PDF
    Transparent conductive electrodes (TCEs) have attracted great interest because of their wide range of applications in solar cells, liquid crystal displays (LCDs), organic light-emitting diodes (OLEDs), and touch screen panels (TSPs). Indium-tin-oxide (ITO) thin films as TCEs possess exceptional optoelectronic properties, but they have several disadvantages such as a brittle nature due to their low fracture strain and lack of flexibility, a high processing temperature that damages the flexible substrates, low adhesion to polymeric materials, and relative rarity on Earth, which makes their price unstable. This has motivated several research studies of late for developing alternative materials to replace ITO such as metal meshes, metal nanowires, conductive polymers, graphene, and carbon nanotubes (CNTs). Out of the abovementioned candidates, CNTs have advantages in chemical stability, thermal conductivity, mechanical strength, and flexibility. However, there are still several problems yet to be solved for achieving CNT-based flexible TCEs with excellent characteristics and high stability. In this chapter, the properties of CNTs and their applications especially for flexible TCEs are presented, including the preparation details of CNTs based on solution processes, the surface modification of flexible substrates, and the various types of hybrid TCEs based on CNTs

    Efficient CO2 Utilization via a Hybrid Na-CO2 System Based on CO2 Dissolution

    Get PDF
    Carbon capture, utilization, and sequestration technologies have been extensively studied to utilize carbon dioxide (CO2), a greenhouse gas, as a resource. So far, however, effective technologies have not been proposed owing to the low efficiency conversion rate and high energy requirements. Here, we present a hybrid Na-CO2 cell that can continuously produce electrical energy and hydrogen through efficient CO2 conversion with stable operation for over 1,000 hr from spontaneous CO2 dissolution in aqueous solution. In addition, this system has the advantage of not regenerating CO2 during charging process, unlike aprotic metal-CO2 cells. This system could serve as a novel CO2 utilization technology and high-value-added electrical energy and hydrogen production device

    Generalized Poincare algebras, Hopf algebras and kappa-Minkowski spacetime

    Full text link
    We propose a generalized description for the kappa-Poincare-Hopf algebra as a symmetry quantum group of underlying kappa-Minkowski spacetime. We investigate all the possible implementations of (deformed) Lorentz algebras which are compatible with the given choice of kappa-Minkowski algebra realization. For the given realization of kappa-Minkowski spacetime there is a unique kappa-Poincare-Hopf algebra with undeformed Lorentz algebra. We have constructed a three-parameter family of deformed Lorentz generators with kappa-Poincare algebras which are related to kappa-Poincare-Hopf algebra with undeformed Lorentz algebra. Known bases of kappa-Poincare-Hopf algebra are obtained as special cases. Also deformation of igl(4) Hopf algebra compatible with the kappa-Minkowski spacetime is presented. Some physical applications are briefly discussed.Comment: 15 pages; journal version; Physics Letters B (2012

    How Transitive Are Real-World Group Interactions? -- Measurement and Reproduction

    Full text link
    Many real-world interactions (e.g., researcher collaborations and email communication) occur among multiple entities. These group interactions are naturally modeled as hypergraphs. In graphs, transitivity is helpful to understand the connections between node pairs sharing a neighbor, and it has extensive applications in various domains. Hypergraphs, an extension of graphs, are designed to represent group relations. However, to the best of our knowledge, there has been no examination regarding the transitivity of real-world group interactions. In this work, we investigate the transitivity of group interactions in real-world hypergraphs. We first suggest intuitive axioms as necessary characteristics of hypergraph transitivity measures. Then, we propose a principled hypergraph transitivity measure HyperTrans, which satisfies all the proposed axioms, with a fast computation algorithm Fast-HyperTrans. After that, we analyze the transitivity patterns in real-world hypergraphs distinguished from those in random hypergraphs. Lastly, we propose a scalable hypergraph generator THera. It reproduces the observed transitivity patterns by leveraging community structures, which are pervasive in real-world hypergraphs. Our code and datasets are available at https://github.com/kswoo97/hypertrans.Comment: To be published in KDD 2023. 12 pages, 7 figures, and 11 table

    Proposal of Strength Formula and Type Development of Composite Mega Column to Beam Connections with T-shaped Stiffener

    Full text link
    [EN] As buildings are becoming larger, demand for mega-sized composite columns (over 1-meter diameter) is increased. We have developed and commercialized welded built-up CFT column (ACT Column I) since 2005 which are structurally stable and economical using cold-formed steel with rib. However, there has a limit in size of cross section (618 X 618mm) by a fabrication facilities. And due to charateristics of closed cross section, there has a limit to construction of connection of moment frame. Composite mega column (ACT Column II) has same concept of forming closed cross section. But in order to enlarge cross sectional size, thick plate is inserted between cold-formed steels. Since composite mega column can control thickness and width of thick plate, steel or composite beams can be directly attached to the connection. In this study, we propose strength formula of composite mega column to beam connections with T-shaped stiffener as internal diaphragm and verified through finite element analysis and simple tensile experiment.Lee, JH.; Kim, SH.; Kim, BK.; Yom, KS.; Choi, SM. (2018). Proposal of Strength Formula and Type Development of Composite Mega Column to Beam Connections with T-shaped Stiffener. En Proceedings of the 12th International Conference on Advances in Steel-Concrete Composite Structures. ASCCS 2018. Editorial Universitat Politècnica de València. 465-473. https://doi.org/10.4995/ASCCS2018.2018.7016OCS46547
    corecore